Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils.
نویسندگان
چکیده
The complement system has been shown to mediate renal ischemia-reperfusion (I/R) injury. However, the contribution of complement factor C5a to I/R injury, in particular in the kidney, remains to be established. In this study, we investigated the impact of blocking the C5aR pathway on the inflammatory response and on the renal function in a murine model of I/R injury. First, we analyzed C5aR expression in kidneys of healthy mice. Intriguingly, we found expression on mesangial, as well as on tubular epithelial, cells. After I/R injury, C5aR expression was up-regulated in tubular epithelial cells. In addition, mRNA levels of CXC chemokines and TNF-alpha increased significantly and kidneys were heavily infiltrated by neutrophils. Blocking the C5aR pathway by a specific C5a receptor antagonist (C5aRA) abrogated up-regulation of CXC chemokines but not of TNF-alpha and reduced neutrophil infiltration by >50%. Moreover, application of the C5aRA significantly reduced loss of renal function. This improvement of function was independent of the presence of neutrophils because neutrophil depletion by mAb NIMP-R14 did not affect the protective effect of C5aRA treatment. Furthermore, blocking of the C5aR pathway had no influence on renal apoptosis. These data provide evidence that C5a is crucially involved in the pathogenesis of renal I/R injury by modulation of neutrophil-dependent as well as neutrophil-independent pathways, which include the regulation of CXC chemokines but not TNF-alpha or apoptotic pathways.
منابع مشابه
The receptor for complement component C3a mediates protection from intestinal ischemia-reperfusion injuries by inhibiting neutrophil mobilization.
C3a is a key complement activation fragment, yet its neutrophil-expressed receptor (C3aR) still has no clearly defined role. In this study, we used a neutrophil-dependent mouse model of intestinal ischemia-reperfusion (IR) injury to explore the role of C3aR in acute tissue injuries. C3aR deficiency worsened intestinal injury, which corresponded with increased numbers of tissue-infiltrating neut...
متن کاملC3a and C5a promote renal ischemia-reperfusion injury.
Renal ischemia reperfusion injury triggers complement activation, but whether and how the small proinflammatory fragments C3a and C5a contribute to the pathogenesis of this injury remains to be elucidated. Using C3aR-, C5aR-, or C3aR/C5aR-deficient mice and models of renal ischemia-reperfusion injury, we found that deficiency of either or both of these receptors protected mice from injury, but ...
متن کاملGene silencing of complement C5a receptor using siRNA for preventing ischemia/reperfusion injury.
Ischemia/reperfusion (I/R) injury in organ transplantation significantly contributes to graft failure and is untreatable using current approaches. I/R injury is associated with activation of the complement system, leading to the release of anaphylatoxins, such as C5a, and the formation of the membrane attack complex. Here, we report a novel therapy for kidney I/R injury through silencing of the...
متن کاملACELL December 46/6
Kyriakides, Constantinos, William Austen, Jr., Yong Wang, Joanne Favuzza, Lester Kobzik, Francis D. Moore, Jr., and Herbert B. Hechtman. Skeletal muscle reperfusion injury is mediated by neutrophils and the complement membrane attack complex. Am. J. Physiol. 277 (Cell Physiol. 46): C1263–C1268, 1999.—The relative inflammatory roles of neutrophils, selectins, and terminal complement components a...
متن کاملSkeletal muscle reperfusion injury is mediated by neutrophils and the complement membrane attack complex.
The relative inflammatory roles of neutrophils, selectins, and terminal complement components are investigated in this study of skeletal muscle reperfusion injury. Mice underwent 2 h of hindlimb ischemia followed by 3 h of reperfusion. The role of neutrophils was defined by immunodepletion, which reduced injury by 38%, as did anti-selectin therapy with recombinant soluble P-selectin glycoprotei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 170 7 شماره
صفحات -
تاریخ انتشار 2003